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Abs tract

The nonrelativistic guiding center motion of a charged particle in a

static magnetic field is derived using the Hamiltonian formalism. By

repeated application of first-order canonical perturbation theory the

first two adiabatic invariants and their averaged Hamiltonians are derived,

including the first-order correction termso Other features of guiding center

theory are also obtained, including lowest order drifts and the flux invarianto
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CANONICAL PERTURBATION THEORY

This is an attempt to formulate and solve the nonrelativistic guiding center

motion of a charged particle in Hamiltonian terms. In other words, since

guiding center motion may be viewed as a perturbed periodic motion, we try

to apply to it methods of celestial mechanics (suitably modified) which are

designed for motions of this type.

One such method (often associated with the names of Poincare and Von

Zeipel(l) - (6)) is the following. One begins by obtaining the zero-order

Hamiltonian H(0 ) - that is, the limiting Hamiltonian for the case of the

perturbation tending to zero and solves the associated Hamilton-Jacobi

equation for action-angle variables (J, f ). This should be possible since

it is given that the £ --> 0 limit is both periodic and soluble.

The Hamilton-Jacobi equation gives the generating function W of a

canonical transformation to new variables (Pi, qi) that include the action-

angle pair. In the system described by H(O) alone, all new variables are

constants of the motion, except for Q which is linear in time and increases

by unity each period. This transformation is now applied to the full Hamil-

tonian (with finite £ ), so that the new variables vary slowly, except for

Th- which is now approximately linear in time.

The prescription next calls for a near-identity canonical transformation

(Pi, i) ' ( P i' qi )

with transformed action-angle variables (J*, SY*) and with
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H*( p a ) = H*(O)( P ,* ) + g W*(1)

the new Hamiltonian, such that H* does not contain L * . If this is

accomplished then J is a constant of the motion, termed adiabatic invariant

in guiding center motion and sometimes called a third integral in celestial

mechanics (the terms are not synonymous and their difference will presently

be noted). Further solution of the problem by means of H* does not have to

contend with' (J*, Q*) and thus involves two variables less than the origi-

nal problem, corresponding to a reduction by one dimension.

Let the near-identity transformation have a generating function

S( _ E P i q+ F k S(k)( p ) (2)
k=l

Then if the time t is not explicitely involved, the old and new Hamiltonians

are equal, giving

211a ak H(k)p + m S ()/D q q)

k=O

L tak *(k)( pMq +s Em S(m)/1Dp )

k=O

Expansion gives, for O( £ )

H() ( p q ) = H*(O)(p ,q ) (3)

which is acceptable, as H(O) does not contain n , the conjugate J

being a constant of the motion. For the terms of order 6 one gets
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+ E(M s(l)/ q,)(ZH(O)/ )

= H*(1) + E 'SW1/ 'Ipji)(0 H(O)/-Zq,) (4)

If this is not to be a partial differential equation for S( 1) , only

one term containing S( 1 ) may be allowed. In celestial mechanics)where

the perturbation is "small" and is expressed by terms of various orders

in £ added to H(O) this is accomplished by allowing H(0 ) to contain

only J :

H( O) 5= jJ/ 2 ( 1A = const,) (5)

Then (4) gives

(W/2n )(O S(1)/Mr ) + H( 1) = Hl*() (6)

If (as is assumed) any dependence on l is via periodic functions, then

any function F containing f may be resolved into an averaged part

1

<F > F d (7)

0

and a "purely periodic" or "oscillating" part, with zero average,

(F)osc = F - <F (8)

Now H* ( 1) has no dependence on l while (I'S(l)/f3 ) is purely

periodic - any part of S(1) independent of fL is eliminated by the

differentiation - so
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= < H(1)> (>)(9)

S l) = (2IT/CJ) (H( )) dO.i (lo)

which gives the transformation to first order.

In guiding center motion the situation differs somewhat, since the

perturbation is not necessarily small, but rather is what is known as

slow or adiabatic (this leads to the difference between third

integrals and adiabatic invariants). In an adiabatically perturbed system

some of the variables (collectively denoted as qs and Ps ) are "slow" and

have the property that for any function F appearing in the calculation and

depending on them ;(but not containing them as explicit factors), Q F/S'q

or 'D F/' p are of the order of E F . Slow explicit dependence on time

is also possible, but will not be discussed here; it has been investigated by

Gardner( 7 ) , in an article discussed in more detail by Contopoulos (8) . Gardner's

method differs somewhat from the one described here and further developed by

Stern ( 6 ) in that it uses a separate canonical transformation for each order

in o

In adiabatically perturbed motion H( O ) may depend on variables other

than J , provided that they belong to canonical pairs of which at least one

member is "slow". Corresponding terms in (4) are then shifted to higher orders

and one again ends up with (6), (9) and (10). Higher-order results differ

somewhat from those derived for "small" perturbations, but in this work only

the first-order correction terms will be considered.



-5-

Another complicating factor that only arises with orders higher than the

first is caused by the fact that the functions S(
k
) representing the

transformation depend on "mixed" variables - old coordinates and new

momentao To express new variables in terms of old ones, or vice versa,

further untangling is needed; this may be avoided by using the direct form

of near-identity canonical transformations(6) (9) ( Here such methods are

not required, however, for in calculations correct to the first order

it is always permissible - due to the transformation being a near-identity

one - to replace new variables by old ones in first-order correction terms.

For instance, from the transformation relation

Pi = ( S/D qi + Ck S(k)/Dqi

and from (6) and (9), the adiabatic invariant will be

= J - g D (1)/ n + 0( E2 )

= J + &'(2 /Co) ( H(l)[P , q )osc +

-= J + £ (24/c) ( H( 1 ) [p, ] )osc

Because the first-order correction

long-term average of J is conserved

this(
6
) that the total variation of J

+ 0( E2) (11)

of J* is purely periodic, the

2
to order F . It may be shown from

-1over a time period of order over a time period of order . is

of order _ , leading to the well-known property of lowest-order adiabatic

invariants, namely, that in a system undergoing a finite perturbation their

o( E2 )
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total variation may be made arbitrarily small by stretching out the pertur-

bation over a long enough time.

The arguments of H* evolve on a time scale one order slower than

that of the zero-order gyration of H 0 If however the motion represented

by H* is also periodic in its lowest order, the preceding procedure may be

repeated, leading to additional adiabatic invariants (this was also pointed

out by Gardner). A particle in the earth's radiation belt, for instance, may

have three independent periodicities, each associated with an adiabatic

invariant, and these invariants should be derivable by repeated application

of the preceding routine.

Almost all perturbation methods contain a "smallness parameter"

I 1 , but in adiabatic perturbation theory 6 is somewhat artificial(6).

It may be introduced by rewriting 0(E ) terms (e.g. for some "slow"
variable qsi) as

'I~ F1qsi --q 8 (I1 /3 ( qi)) (12)

but (since no definite numerical value of £ is available) it must be removed

by the reverse process before the final result is obtained. The only time S

is used is in grouping terms according to the order to which they belong. In

what follows there will generally be no question about the order to which a

term belongs, and therefore we may avoid any use of F. altogether, although

first-order terms will sometimes be labeled by superscript "(1)" o
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PRELIMINARY TRANSFORMATION OF THE HAMILTONIAN

The guiding center motion of a charged particle in a magnetic field is

strongly related to the structure of field lines and one would expect this

structure to enter somehow into the calculation. This is done

via the Euler potentials(11)( o, p ) , related to the field vector B by

B = Vc x V (13)

Each field line then may be viewed as the intersection of two surfaces

o~ = constant = c<0

P= -constant = 0o

it

andAis consequently labeled by the parameters ( doO , DO) o Associated with

( 04, p ) is a vector potential cd V~ orthogonal to B , which will be

henceforth adopted.

·Euler potentials may be introduced into the dynamical problem of charged

particle motion by choosing (o( , P ) as curvilinear coordinates of position.

For the third coordinate one may choose s , the distance measured along field

lines from some given reference surface. In curl-free magnetic fields the scalar

magnetic potential S would probably be a better choice, but this was not

investigated.

Gardner( 7 ) has carried out the first steps in transforming the Hamil-

tonian and we shall start with his transformation, continuing from there

according to the prescription outlined earlier. Our choice of subscripts

follows Gardner's, but his use of E is not adopted.
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Let the vector x give the cartesian coordinates of a particle of mass

m and charge e , and let TT be the canonical momentum vector conjugate

to x . The non-relativistic Hamiltonian for the particle's motion in a time-

independent magnetic field is then

H = (1/2m) { - (e/c) o(V D 2 (14)

A canonical transformation to new variables (P, Q) , generated by the function

F(P, x) = P3 o(x) + P1 P (x) + P2 s(x) (15)

transforms to a new system in which the canonical coordinates Q equal

( c , p , s ) . It does not, however, separate the rapid gyration around

field lines from other motionso That is achieved by a canonical transformation

proposed by Gardner ( 7 ) , generated by

F = P3 1 + P l + Pa2 - (c/e) P P1 (16)

This gives

H = (1/2m) { P3 Vo - (e/c) VP + P2 Vs} 2 (17)

and

= (c/e) P
1

+ 

= Q1 + (c/e) 3P(18)

s = Q2

In a homogeneous field with B = z B ( S unit vector ) this is readily

solved(
l

) by choosing
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oc - x F By s = z (19)

leading to

H = (l/2m) [p2 + (e/c)2 B2 %32 p22] (20)

The variables (P
3
, Q3 ) appear here in the same form as the canonical

variables in the Hamiltonian of the simple harmonic oscillator; therefore)

they vary periodically and represent the gyration. On the other hand, by (18),

c Pl/e and Q1 may be identified as the (constant) Euler potentials of the

guiding field line, while P2 represents the momentum component parallel to

the field and is also constant.

Unfortunately, this solution cannot be immediately extended to the

general nearly-homogeneous field, because the vectors ( Vi , , Vs ) are

usually not orthogonal. The non-orthogonality of ( v7o, VP ) can be remedied

by adding to the generating function F a term EP 3 , where

X = (c/e) ( V)/ ( v) 2 (21)

The non-orthogonality of V s to the two other vectors is harder to correct.

One might hope that some scalar a' replacing s would have the required

property, but this is not so, except for special cases (e.g. curl-free fields,

where the scalar potential 9 may serve as s' ). For if s' existed such

that Vs' Vo( and Vs'v P7 both vanished, then a scalar / must exist

such that

B = / v s'

implying

B *( x B) = O

which is not always satisfied.
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However, if the field varies slowly in space, so that quantities such as

V Vd and vV are 0(E ) , it is possible to define a scalar Tr such

that VTO is orthogonal to Vok and VP within 0(E ) correction terms. We

take

= s - o(a - b (22)

where

a = B- 2 B .( Vs X V)

(23)

b = B 2 B . (VoX s )

giving ( = B / B)

B = Vs - aVo' - b V (24)

and hence

VT = B - d Va - Vb

= B + O(C) (25)

In this calculation the field B and associated quantities such as o( ,

v , a, b and ) are all 0(1) , while quantities derived from them by

differentiation - VVo(, V a , Vt etc. - are all o(£). However, od

and ~ appearing explicitely in eq. (25) are not of order E-1 but

also 0(1). The difference between them and 0(1) field quantities such as

B is that field quantities depend slowly (or adiabatically) on position vari-

ables,whereas (4 and P depend on such variables in a "regular" (non-slow)

fashion. This is evident from (18) for the variables generated by (16) and

also holds in what follows.
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To accomodate the non-orthogonality of the basic vectors we let the

initial canonical transformation be generated by

F(P. ix_ = W P3 + P P + T P 2 - (c/e) P3 P1 + + A4 (26)

Application of the transformation equations gives

=4 (c/e) P1 + (+ P3) (27)

Q, + (c/e) P3

r =

(28)

(29)Q2

Also, the canonical momentum vector is (gradient taken in x space)

iT = VPF P PVo + P1 7X + P2 Va - P
3

VA

Substituting everything in (14) then yields

H = (1/2m){P3.V - (3/c)(%+ AP3 )VP + P2 vo P3 2,V 2 (30)

The vector being squared is the (non-canonical) momentum m v of the particle

and the first two terms in it may be regarded as the zero-order component

m v( 0 ) of this vector orthogonal to the magnetic field. If one defines a

vector T orthogonal to both B and VP

T = vo - (e/c) >v (

then this part may be written in terms of orthogonal vectors as

m v(°) = P3 T - (e/c)% V(

(31)

(32)
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TO GUIDNG CRBTE EPANSION

The magnitude of T is

I T = B /Ilvl (33)

which with (30) and (32) gives

( 22m){, P2 B2/(V^) 2+ (e/c) Q2 2 (Vp)2 + p22(V )2} + 0( )

(34)

This resembles (20), but there exists an important difference: the variables

(P3 ' Q) appear not only as explicit factors but also by (27)-(29), in the

variables ( i , " ) giving the locations at which B
2

and (vJ)2 are

to be evaluated. To eliminate (P
3
, Q3 ) from these variables one must

expand any function of position around the "guiding center" point, denoted

by subscript "c" and defined by

( , Pc * c c ) = ( cP/e , Q1 ) (35)

By (27)-(30) , the guiding center expansion for any function f of position

may be written

f(o p, ~,) = ( expD ) f( ac, Po c)

where D is the operator

D (= + A P3)( /a c) + (c P3/e)(<'/9Pc) (36)

and where (exp D) is defined by the Taylor serics of the exponential

function. In what follows, all functions depending on position will be

assumed to be evaluated at the guiding center, unless otherwise is stated,
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To understand the significance of D , let us define (in guiding center

variables, subscript omitted) the operator

1 = VM('/%d ) + ~v (?/ ' ) (37)

In addition, let the angular frequency of gyration be defined as

= B e / m c (38)

and the gyration radius as the vector

with v defined as in (32) but) (39)

with v(
0 ) defined as in (32) but evaluated at the guiding center. One

then finds (it is best not to simplify the cross products below)

( *ev.) - _( B)Y v L { (B X V [)(3 /1bi) 1,

+ (B x v)(/a ) = D (40)

Two comments may be made here. First, in order for the expansion to be

valid we require

D << 1

i.e.

( V) l 1 (41)

In other words, Y is to be much smaller than the scale on which the field

variables change. This is known as Alfv4n's criterion for the validity of

the guiding center approximation and provides a more precise formulation of

the statement made earlier that "the field varies slowly in space."
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Secondly, the difference between Y 'V and I.V is small, since B

and var are almost parallel; it is given by

i( 2 * )-) //r = w-1 ( KV x )~ . v(() ' / ao-

= o(e) D3/ r (42)

In the present calculation we only retain terms of order E and therefore

in such terms the difference between f-Vl and T-V may be ignored.

Application of the expansion to the Hamiltonian (30) then gives

H = (l/2m) m v(° ) V + mP2 V 0(6 2) (43)

where

mv(l) = mo v ( ° ) + P2 S VVr - + p3 2 V = O(£) (44)

and where all variables are defined at the guiding center.

ZERO ORDER ACTION - ANGLE VARIABLES

We now apply to the system the transformation derived from the Hamilton-

Jacobi equation in the limit E -> O . In this limit both B and (* p) 2

are constant and the Hamilton-Jacobi equation derived from (34) separates

into two equations, representing motion parallel and perpendicular to the

field. Of these the former gives constant motion along the field's direction,

while the latter resembles the Hamilton-Jacobi equation of a harmonic oscil-

lator(
1 2

) ( 3 ) . Of course, when we actually apply this transformation to the

given system, B2 and (V7)2 must be allowed to vary slowly again.
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If the new variables are denoted by (p, q) , with action-angle variables

(P3' q3 ) = (J. ) (45)

then the generating function of the transformation is

W(p, ) = J [(JSe/n c) - (es /c)2 Q 2 deQ + P1 Q + P 2 (46)

where

F = (V)2/ B (47)

and where all variables are evaluated at the "mixed coordinate guiding

center" r' , defined by-c

( (4', ,' ;c ) =- ( c P1 /e ,Q1 ' Q2 ) (48)

We then have

P = D / 
3 /O3

[ (J e/n c) - (e /c)2 %2 I (49)

from which the first part of (34) is

+ (e/c)2 %2 (vvp)2] = J(4/23T (50)

Strictly speaking, this may not be directly substituted in the Hamiltonian

since C) and other quantities are here defined in mixed variables. However,

we have for such quantities

(1/2m) [ p2 B2/(Vf)2
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( rc ) = - (_rc) + (c/e) (P1 - P1 ) ('/'e) + ...

c= (Xd) + o(E62) (51)

since D O/i)o ,' (P1 - P1) and similar quantities are all O( ) o Because

the present calculation ignores second-order terms, the difference between

"mixed" and "true" guiding center variables (either "new" or "old") in

slowly varying functions will be neglected.

One also has

An = 'r W/Z J (52)

from which

Q3 = (Jc/ s e)+ sin (2 nM.) (53)

P3 = (J 8 e/n c) cos (2 n ) (54)

Because only zero and first order terms are retained all other variables

may be assumed to transform identically, except for P2 , which appears

explicitely in the zero-order Hamiltonian. For P2 one finds

P2 = W/'Q2 = P2 + ('W/'Z )(a/cr) + o(
e
2)

= P2 + P2 + 0( 2) (55)

It may be shown that the integral rZSW/OS reduces to

= (J/4A 6 ) sin (4AIn )1-w/0 = Q3 P / 2 6 (56)
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which allows A P2 to be computed. The new Hamiltonian may thus be written

H = ( )( 1 )+ H( 2 ) (57)

where the zero-order part is

H(
0

) = JX/21T + (VT) 2 p2
2 /2m (58)

and the first-order correction is

H() = m(v() V()) + P2 vcr (V(0) .v )

+ P2 A P2 /2m (59)

DRIFTS

From the transformed Hamiltonian we can derive the slow variation of the

guiding center coordinates ( c' c c ) , which may be conveniently redefined

as (cpl/e, ql) . This represents an O( ) difference from (35), but since

only the lowest order of the motion will be derived, this difference may be

ignored.

One can always assign to the guiding center a velocity V satisfying

(subscript "c" omitted)

= (! V v) + (r60/ t

(60)

p , (v.vg, A + ap t

In the present case /Pb t vanishes and Hamilton's equations give
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-(c/e) D vH/ q1 - (c/e) D aH/) 

= IX/' P1

Vx B = V x (Voxvp )

= Vo (V. V) - v~ (iV.e)

= VC4 g - VJ i,

= (c/e) VH

The component of V parallel to B is not determined by (60) and by the

equation that follow it and will therefore be set equal to zero, since we only

are interested in motion perpendicular to field lines. Forming the vector

product with B then gives

V = (c/eB2) B x VH (63)

Because higher order corrections are not derived, we may again ignore the

difference between V,, and V . Using (58) we find that V H consists

of two parts, each of which contributes to the "drift motion" represented

by V . The first part contributes the so-called gradient drift

V :.
'"

(c/eB2) J /2 7 (B x V B)

= OC pl/e

Hence

= (c/e) m/ OI

(61)

(62)

4l

(c/oB2 ) J/2n (B X Vo )

(64)
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Because of (50)

JW/2a - m v2 + o0( ) (65)

from which

v = ( v2 /2B ) _ X VB (66)
-g

which is the customary expression for this drift. The second term contributes

the so-called curvature drift

V curv (c p22 /2emB2 ) B X vl(v)2 (67)

By (25)

+V(vT )2 = V(o- vv 7

= [ B + 0( ) ] [VB --Va V Vb + 0( E,2)]

= VB + 0( 2) (68)

with the last equality following the vanishing of B.Vc and BvP . To

lowest order one may also replace P2 with m v/ , where v., is the

velocity component parallel to the field, giving the drift in its usual

form as

V = ( v/c X (B.V v) (69)

If the r/' t terms of (60) had been retained, then (63) would have

contained an additional term

YF = (c/eB2) B X {V (Co (/ t) - v ( /'at)} (70)
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representing the velocity with which field lines appear to move due to

X')/7 t and 'a/ t (nl)(l4)(l5). While this certainly does not

represent all effects of time dependence, a term of this form may be

expected to appear when one deals with a time-dependent field.

THE FIRST ORDER INVARIANT

By (11) and (59) the adiabatic invariant associated with gyration around

field lines is

J* J + (2 I/( m){ (XO)v(l))osc + P 2 +Jfv.v) + p2 P2 +

+ Vsp2 o (x(°) + v(l)) } + O( 2) (71)

where t is not explicitely written since it is already included in the

present definition of H(l) and where the subscript "osc" is omitted from

the term containing a P
2

since, by (55) and (56), this term is purely

periodic with zero average.

The above result is not in useful form, since J is not directly

observed. It is better to eliminate J in favor of v2 , the square of

the total velocity component perpendicular to the field, the field's

direction being chosen as that existing at the guiding center. By (32),

(50) and (51)

J = J m ( v())2 + 0( 2) (72)

In 0( & ) terms this may be used with the superscript zero omitted, as

in (65). In the first term of (71), however, J must be expressed accurately

to order E 
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Let

v
-.

= 0)
= L. + ALV

Then with 0( ) accuracy

2
VL ( _ ) )2 + 2 ( .

(
°

)
. _ V )

= Jco/2- + 2 ( X(
°

) .* v )

From (43), (25) and (35), to lowest order

V(1)

-1
+ m P2 VLTC

- -1 P2 [(c/e) P1 Va + qV.b ]P2L lqb

Before substituting this in (71) one may note that to the order of that

equation

m2P2 ( VL() + () ) ' m P2 ( V7.C' Z ) + m P2 ( )
(76)

The combination of (71) and (75) therefore gives

J * (y a 2 /) - (2) /Zm) 2 < (0). (1)> 
VA. 1 J~~-. -. 1/

P2 A P2}+ m p 2< Vo v) > -mp 1)

+ ( F2)
(77)

The averaged terms vanish. In evaluating them we may discard all terms

that are linear or oubio in coomponents of (
0 ) -- inoluding such faotors

as S , P3 and t - since such terms average to zero. By (75), the term

(73)

(74)

(75)



-22 -

in (77) involvin vPr ins Aner in (O°
) vaishes up ave ,ing.

In deriving the term predig it we may ot all te s of (
1
)

that axe quadratic in osillating quantities, hich by (44) only levaw

a2 <t(0) P (.L)¶ ? VVr (78)

Now it may be showa from (31) that

ax , Ji - - (vP) 2 (79)

a X I - v B2/(v)2 (go)

Combining these with (32) and (39) gives

* (l / B) r P3 B2/(VS)2 + (o)Q3 (VI})2 (81)

By (56) the average of P3 Q3 vanishes, while (compare eq. 50)

(O 2 2< > ( ) g2 , <P 32 > 'B2/(

- Jw x/2 n (82)

Therefore, from (32) and (81)

(< L > (J/2n B.) [ a - (3p) ] (83)

This is an antisymmetric dyadio and its double scalar product with the

symmetric VTQ vanishea. Thus if one ignores oorrection terms purely

periodic in A , v. /B is invariant even to order E., provided

B is evaluated at the guiding center. This result has already been

noted( 6 )
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To derive the first remaining 0( S ) term in (77) one requires the

oscillating part of v(l) . From (44)

-A v 2 --
m P2 B osc p22 B :vv +

+ P2 ( m ,Vv() - P3 (B .V ))os (84)

Actually one must excercise care with the middle term appearing on the

right. When V v (° ) was originally derived for this term, the 7

operator did not act on P
3

and Q but only on the factors preceding

them:

m isvzp ) v ( VVP i) P3 - (e/c)(BsVVp(Q
3
+ P3) (85)

(the term containing V ) has a vanishing factor Be VP ). At the present

stage, however, % and P3 are regarded as functions of (J, )

through the relations (53) and (54). These relations also introduce a

dependence on guiding center variables, through the function t which

they contain. Thus when v(° is viewed as a function of (J, n)

V v(°) contains extra terms with

V Q3 = - (Q3/2) vS
(86)

P3 = (P3 /2 ) VW

In equation (84), however, this redefinition of V () makes no diffe-

rence, since the extra terms are there accompanied by the vanishing

factors (i' v.<) and (! ' vP ) .
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By equations (25), within higher orders, (B · v)) equals /'rO'

Also, by (54)

(P32)o c = (e/c) (JS/2r ) cos (4 ) (87)

Using preceding results and expressing A P2 through (6) gives as the

final form of the invariant

2 /02 (Ay^+
nm v./L + (2r/,) [ P2 (jsV +

+ m P2 v())oc - (e/c) P
2

(JS/4jX)(A10/'0T) cos (4n1 .)

+ P2 (J/4 S )(A /T) sin (4n) ] + o(e2 ) (E)

The various first-order terms may be transformed to the forms used by

Northrop and by others . This yields all the usual first-order terms,

plus one term which has not been accounted for and which may be due to a

different definition of the guiding center, due to an error or else may vanish

by some identity.

SHE TRANSFORMED HAMILTONIAN

The transformation which replaces ( J , A% ) with ( J*, S* ) affects

the remaining variables only in their second order; If the generating

function of, this transformation is of the form (2), then (for instance) the

variable P2* replacing P2 is (compare equation 11)

'P2* = P2 - r S(1)/ q2 + 0( 62) (89)

2and since q2 is "slow", the second term is also of order £ . We will
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therefore not change the notation of such variables but assume that they

transform identically. The new Hamiltonian E* then has a zero-order

part resembling (58) s

*= JT*4/27 + (V )2 p22/ + H*(l) + 0( s2) (90)

The first-order part is given by (9) and (59) as

H*(l) = ()(m v(l) P2vr)> + p < (l)> + m 1 P2 <A P2 >

(91)

but as was shown in the last section, only the middle term here does

not vanish. The factor (vr)2 will be kept in the zero order part, even

though it could be resolved into terms of zeroth order ( = unity ) and

of first order. In principle, the first-order part of this expression could

cause trouble, since it contains terms proportional to o( and P , and

one of these may be angle-like and grow without bounds. Formally one

can resolve this by switching to a new ( o , P ) system when the

angle-like variable has completed a full circuit; in practice this ambi-

guity may be expected to disappear when results are expressed in observable

quantities and in any case, at a later stage (V')2 will be transformed

away.

Using (44) one finds, to the order of the approximation

H*(1) = p<2<ivyvL > - in~P< <m'9 P2Pr
(92)
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where the contribution of the middle term is omitted since it is linear

in oscillating quantities.

The evaluation of the first term requires the vector identity( 17)

AB :V C = B A : VC (93)

(the notation of the preceding equation and of the two that follow is

independent of the one used in the rest of this work). Now let A and

C be two orthogonal vectors. Then

(A-C) = 0 = A-vC + C-V A + Ax(V x ) + C (V x A (94)

Performing the scalar multiplication of (94) with an arbitrary vector B

and applying (93) then gives

= - CB: VA (95)

By (39) the magnetic field and 2 are orthogonal; therefore, using (83)

and (93)

= - ( J* / 2 TmB ') [ T V- V T] :V B

= - ( J / 2 mB ) (V x T * (V x 2

Here one must use J* as variable, since we are dealing with a term of

H* .By (31)

T x VP =B

(96)

(97)

+ (B x A - (V x 
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so

B 0) ( J*/ 2 m ) B . (V X ) (98)

To lowest order J* equals J , and by (82) one may therefore

substitute in the last term of (92)

< P
3
2 > J*s e/2r c + O(E) (99)

giving as final result

*(1) = (P2 J*/2I mB) '^ o (Vx _) - (P2 J * e/4 l mc) )A/)O" (100)

The possible applications of H* include the associated Liouville

equation, which should lead to a gyration-averaged form of the kinetic

equation for a collisionless plasma, of the type first derived by Chew,

Goldberger and Low8).

ME SECOND PERIODICITY - THE LIMIT = 0

Consider the limiting case of (90) in which higher order terms and

the dependence of on (Pl, ql) may both be neglected. The Hamiltonian

H*(o) = J* O(q2 )/2 + (V c) 2 p/2m (101)

may then be viewed as describing the motion of a particle in a potential

proportional to u(q2) . If the dependence of a) on q2 (i.e. on or

of the guiding center) has the form of a potential well deep enough to

trap the particle, the motion will be periodic and one can again derive

action-angle variables and an adiabatic invariant.

The definition of 0 is not unique, since there exists a large

arbitrary element in the choice of ( o(, ? , s ) , but the dependence
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of field quantities on it always describes the variation along a field line,

since the other guiding-center ,variables already specify the field line

itself. If the field intensity B (and therefore A ) is large at two

separated points on a field line and lesser between them, a "potential well

geometry" will exist and under suitable conditions the particle will be

trapped in it. These conditions involve the energy integral E of (101) :

since the second term in that equation is non-negative, if the particle

starts between two values of q2 for which JI (q2 )/2:n exceeds E , it

will be trapped.

Assuming that periodicity exists, we now seek the generating function

W(J2 , q2) to new variables (J2,. 2) that are action-angle variables of

(101). Since this is the limit = 0 , both pl and ql are to be con-

sidered as constant parameters that do not vary in time; independently of

£ , J* is always a constant at this stage and may be removed from consi-

deration as a canonical variable.

If T(pl ql, J*) is the period of this motion, £L 2 must increase

by unity during each period and therefore the new Hamiltonian must depend

on J 2 through a term J 2 / T e To derive T one must solve the zero-

order motion in the given potential well, something that can often be only

done numerically or approximately. This is one point of difference between

this periodic motion and the gyration around field lines discussed earlier:

with the gyration the basic frequency requires only knowledge of the local

magnetic field, while here a more complicated solution of the zero-order

periodicity is required.
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Assuming T to be known, the Hamilton-Jacobi equation becomes

J*W /2X + (V0)2(-'7W/1 q
2
)2/2m = J

2
/ T(p1, ql, J*) + F (102)

where F is a yet undetermined function of the slow variables (not related

to eq. 26 ). From this

W (2m)l JJ2/T + F - J*cJ /2j L dq2 /(Vr)21 (103)

giving

(V -)2 p22 /2m = J 2 /T + F - J*a /2JT (104)

which confirms the form of the new Hamiltonian as the one given on the

right of (102). Also

Si 2 2 W/PJ2

(105)

= (m/2)+ T [1 J/T + F - JA /2J]9 [ dq2 /( )2 ]

The significance of this is easily seen. Since Jc) /2 JT is the energy

associated with the component of the motion orthogonal to the field, we

have (at least to zero order)

vt = P2 / m

Also, since along a field line ( o/ , P ) do not change

= ds + 0( £ ds ) (106)dq2 = dr
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Hence, if qT is the time of motion evaluated using v// alone

Q2 T J (ds/v1 ) 2T (107)

In order to express T we use the fact that L 2 increases by unity
(105)

each period. IntegratingAover one full period then gives

T = m (dq/p2 ) f(ds/v/) (108)

It is interesting to note that the familiar formula

JP2 = P 2 (109)

is not obtained as part of the calculation. It enters as follows(l9)s

since n 2 increases by unity each period

i 2 n 2/ 2 d2

df= ~ (Df w2W q2) dq
2

( / J2 ) ( W/J q2 ) dq2

= (/Z J2) p2 dq2 (110)

The last condition is satisfied if (109) holds, but more generally it

only requires J2 to have the form

J2 P2 dq2 + K(ql' P1) (111)
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The function K is arbitrary and varying the choice of this function

(with H remaining constant) results in different choices of the function

F in (102) and in the equations that follow there°

However, if we wish to use the transformation (103) as the starting

point for a perturbation expansion there exists an additional considera-

the
tion which dictates Ahchoice of J2 satisf yin109) : unless such a choice

is made, the transformation of the subsidiary variables (P1, ql) for

finite E will contain a secular term. This point will be discussed

in the next section; the function F to be used is than implicitely

defined by the relation

J2 2 (2m)+fLJ2 /T I+ F - J*Wl)/2J] '+[dq, 2 /(V)2]

(112)

TEE SECOD PERIODICITY - FINITE 6

To transform (90) with (Pl, ql) (but not J*) restored to canonical

status, equation (103) must be modified to

w(J
2
, q

2
' P1, q1 ) = Wo + P1 q1 (113)

where (Pl1t ) are new variables (though older notation is used in

labeling them) and W0 is the expression on the right side of (103),

evaluated at (cP1/e , ql , q2 ) 

The transformation of (P2' q2 ) resembles the one previously

obtained - in particular, (104) is again obtained. Because T, F and l)

are now evaluated in "mixed" variables, this confirms the form of the

zero-order Hamiltonian
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H = J2 /T(P1' Q, e) + F(P1' Q
1
' J*) + O() (114)

only if the transformation of the subsidiary variables (or at least of ql)

is a near-identical one. For ql we have, by (113)

' q, + 1)wo /q P1

The second term here contains '7i/3 P
1

which lowers the term by one

order in P -P1 being slow - but it also contains W

0

which is an

open-ended integral in q2 . Unless this term is either periodic or

independent of P1 , it may grow without limit and after O( £
- 1 ) periods

this growth may be large enough to offset 'D/9 P1 and give a transfor-

mation which no longer is of near-identity type.

Let q2 (k) denote the value of q2 at the end of the k-th period.

and let N be a large integer, of order £-1 . Suppose the system is in

its (N + 1) period: then

N q2(k) q2

W o /z 1 P, 0 1) { P Zf 2 dq 2 P2 dq2
ksl q2(k-1) q2(N)

= (;)//P1) fZ[J 2 + K(ql, P1)] + O(J2) } (115)

The last term in (115) is 0(1) and differentiation reduces it to 0(C ) ,

allowing it to be ignored. The summation term on the other hand is large:

it consists of two parts, the first of which does not survive differenti-

ation, since it is equal to NJ
2

* The second part could raise (115) to

0(1), but if J2 is defined as in (109) K vanishes and this part does

not arise.
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It may be remarked here that the same consideration is implicit in

the earlier transformation (P3 , Q3) --- (J , L ) , generated by (46). In

that case, again, expressions such as 'D W/D pl appearing in the

transformation of subsidiary variables could give rise to secularly

increasing terms if the open-ended integral DW/7 S exhibited such

growth. As is shown in (56) this integral is in fact periodic in n1 and

such growth is avoided.

The first-order Hamiltonian is

H = J 2 / T + F + H(1) + 0( 2) (116)

where H(
1
) is obtained from (100) by replacing (Pl, ql) with (P1, Q1)

and eliminating (P2, q2 ) by means of (104) and (105). The replacement

of q2 by i.. 2 is rather difficult, but fortunately it may be by-passed

in evaluating the first-order adiabatic invariant. By (11) and (8), this

invariant is ( E not written, averaging taken over -L2 )

J* = J2 + T ( H( 1
) - H(l)> ) + o0( 2 ) (117)

Let q2 be retained in H(l) as an auxiliary variable replacing 22

To find < H(1)> one introduces q2 as integration variable instead

of a 2 , using (105) (other variables may be ignored to lowest order):

(>S H(l) d L2 = jH(l) ( n2/' q2 ) dq2
0

(118)

(m/2)3 T H1 i 2 /T + F - JW 6/2 3 d d,,2/(7or T
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No attempt has been made to compare (117) and (118) to the first-order

derivation of J* presented elsewhere(20).

THE THIRD PERIODICITY

Assume now that the transformation eliminating l.L
2

has been carried

out, so that the new Hamiltonian contains J2 as a (constant) canonical

variable describing the longitudinal motion. In this transformation P1

and Q1 also undergo near-identity change and their transformed versions

will be simply denoted P and Q , subscripts no longer being necessary.

The new Hamiltonian is

H(P, Q J* J*) J /T(P Q J*) + F + <H(l1)> 0(62)

(119)

where < H(1)> and F are the same as in (116) and (118) but with

new variables replacing old ones, a substitution which affects only higher

orders since this again is a near-identity transformation. Again this may

be used, via Liouville's theorem, to derive a kinetic equation for a collision-

less plasma trapped in a mirror-like geometry, with averaging over both

gyration and longitudinal motion. It may be mentioned here that the

"Hamiltonian properties" of J2 / T were already noted by Northrop (15)(21)

The Hamilton-Jacobi equation of (119) now seeks the generating function

W(p, Q) of a canonical transformation to a new set (p, q) in which p is

constant and its conjugate q is linear in time. This function satisfies

H [<(w/wQ), Q, J, J ] = V p (120)
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with 9 a yet undetermined constant which could involve J* and J* .

Assuming that 'Z W/%' Q can be extracted from this

W/ Q = f(V P, Q, J', J*) (121)

the equation is easily solved by quadrature.

The physical significance of this somewhat formal procedure hinges on

the fact that independently of the form of W , a canonical transformation

generated by it satisfies

(P, q)/Z (P, Q) = 1 (122)

This is another way of saying that a canonical transformation represents

an area-preserving mapping in the (p,q) phase plane, a fact already noted

by Gardner(7 ) and by many others. One may prove (122) by direct substitution.

Now P and Q themselves are related by near-identity transformations

to the variables P1 and Q1 of (35) which, apart from an unimportant

factor (c/e), carry the connotation of guiding center Euler potentials.

These potentials, however, are far from unique: if ( i , ~ ) represents

one choice for them, equivalent choices od'( o , P ) and t( ( , )

may be used to describe the same magnetic field, provided

D ( A', P )/ ( o4, ? ) = 1 (123)

In view of (122) the new variables (p, q) may be identified as

describing (to lowest order) a different choice of ( do, P ) for the

field in which the particle moves. One may say that among the many different

choices of ( a , p ) describing the given field, there exists one choice
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- or rather, a set of choices - such that a given particle with speci-

fied J* and J2 , on the average (average over SL and AL2),stays

on the same t and advances uniformly in T . The Hamilton-Jacobi

equation (120) then provides a method for deriving Euler potentials

belonging to this particular set.

If the new p - that is, q - is an angle-like variable, the motion

will again be periodic. This will always occur in axisymmetrical fields

(if the other two periodicities exist) for if then p is initially chosen
of

as the azimuth angle 1 , it will be absent from the Hamiltonian in allAits
transformations. Thus in this case Q does not appear in (119) and the

last transformation is trivial. However, the field needs not be axisymmet-

rical for the third periodicity to occur, as is demonstrated by the motion

of radiation belt particles in the earth's magnetic field, which may be

viewed as a distorted dipole field.

If the motion is periodic it will possess an action variable

J3 = p dq (124)

This is commonly known as the third invariant or the flux invariant( 2 2 ) ,

since if p and q are viewed as averaged Euler potentials, then

J3 = (e/c) J (125)

and the integral appearing here equals the magnetic flux i embraced by

the particle's orbit in one period. From general theory (6)(19) one may
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expect it to be adiabatically conserved under slow perturbations. Our

field cannot provide such perturbations, since all variables have

already been accounted for; it may be shown, however ( 2 2
) , that J will

be adiabatically conserved if the field varies slowly in time or if an

electric field is slowly applied to it.
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APPENDIX

We wish to relate the

quantities. Extracting a

gives

B _: V V 8 =

first-order correction of ( 88) to geometrical

factor B from the first term and using (93 )

B : VVs

= SB : ( VB - ViV a - V b ) + o( 2 )

SB : VB + O( a2 )

Forming the dot product of S with

7 A(B x A) = 0

= BVB - B.VB + B (V 

and using ( 93 ) once more gives, finally,

B_: V Vs =

(A-1)

(A-2)

3_,:VB

B= 9: VB V(). (V0 ) /

which, apart from non-geometrical factors, equals the

(15)by Northrop

(A-3)

2
v/! term given

Before evaluating the remaining terms, all of which are proportional to

P2 (i.e. to v// ) , it is useful to derive V x v(O) in the system of

variables that includes (J, f. ). We have, by (31) and (86 )
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m (V x v(°)) V X |P3Vl - (e/c)( + > 3) F

(V P3 X Vo ) - (e/c)(V % + V P3 + P3 V~ )x 7VP

- (P3 /2S )(VE x T) + (e/c)( % /2s )(VS xVj) - (e/c)P3(V' VX )

(A-4)

Using (32) and (97 )

(m2/B) v(o) V X )) = (rn/B) tP3 T- (e/c)Qe VtI(V x vL))

- - (Q P3 / )(B .v) + (e/c) P32 (_.v )

(A-5)

By (41)

(B' .v ) = Z' E/ + o( 2)

Comparing this to (84),

proportional to v,! in

(77) and (56) shows that the 0(E )

J* is

correction term

(2 r/ci) P2 t B I : v() - (1/2 ) vM(
)

.v
( xv( l ) ) } osc (A-7)

Replacing the factor v(O) by O (_ A.

this term

(T/ ) P2 { B. : v v
( )

_ X B) and applying ( 93) gives for

+ B: (0 osc

The average of the first term in (A-8) is given by (98 ) and is easily

subtracted: the result agrees with Northrop's v., term. The second term

remains unaccounted for and has not been further evaluated.

(A-8)

(A-6)
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